A new asymptotic expansion series for the constant pi
نویسنده
چکیده
In our recent publications we have introduced the incomplete cosine expansion of the sinc function for efficient application in sampling [Abrarov & Quine, Appl. Math. Comput., 258 (2015) 425-435; Abrarov & Quine, J. Math. Research, 7 (2) (2015) 163-174]. Here we show that it can also be utilized as a flexible and efficient tool in mathematical analysis. In particular, an application of the incomplete cosine expansion of the sinc function leads to expansion series of the error function in form of a sum of the Gaussian functions. This approach in integration provides a new asymptotic formula for the constant π.
منابع مشابه
Introducing a New Lifetime Distribution of Power Series Distribution of the Family Gampertz
In this Paper, We propose a new three-parameter lifetime of Power Series distributions of the Family Gampertz with decreasing, increasing, increasing-decreasing and unimodal Shape failure rate. The distribution is a Compound version of of the Gampertz and Zero-truncated Possion distributions, called the Gampertz-Possion distribution (GPD). The density function, the hazard rate function, a gener...
متن کاملAsymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملHYBRID FUNCTIONS APPROACH AND PIECEWISE CONSTANT FUNCTION BY COLLOCATION METHOD FOR THE NONLINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS
In this work, we will compare two approximation method based on hybrid Legendre andBlock-Pulse functions and a computational method for solving nonlinear Fredholm-Volterraintegral equations of the second kind which is based on replacement of the unknown functionby truncated series of well known Block-Pulse functions (BPfs) expansion
متن کاملSolving the liner quadratic differential equations with constant coefficients using Taylor series with step size h
In this study we produced a new method for solving regular differential equations with step size h and Taylor series. This method analyzes a regular differential equation with initial values and step size h. this types of equations include quadratic and cubic homogenous equations with constant coeffcients and cubic and second-level equations.
متن کاملA New Model for Prediction of Heat Eddy Diffusivity in Pipe Expansion Turbulent Flows
A new model to calculate heat eddy diffusivity in separating and reattaching flows based on modification of constant Prt is proposed. This modification is made using an empirical correlation between maximum Nusselt number and entrance Reynolds number. The model includes both the simplicity of Prt=0.9 assumption and the accuracy of two-equation heat-transfer models. Furthermore, an appropriate l...
متن کامل